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Hierarchy of Standard Model particle masses
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Problem 1 : Mass terms cause Standard Model calculations to fail
2
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Problem 2 : Fundamental asymmetry between EM and weak force
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Solution: Higgs mechanism

® Add field throughout the universe
® Potential is symmetric
® Ground state breaks symmetry
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® W and Z bosons gain masses through degrees of freedom of
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2 Add field throughout the universe

® Potential is symmetric
® Ground state breaks symmetry
® Miraculously e

® Masses are generated for the fermions due to their
interaction with this non-zero field

® Theory preserves symmetry (gauge invariance)

® Standard Model calculations no longer fail

® W and Z bosons gain masses through degrees of freedom of
Higgs field

® A new particle is predicted : the Higgs boson

® Finding the Higgs boson
® Means Higgs field exists

® Means we confirm our theory for origin of mass

SM (with Higgs mechanism revision) tested experimentally to <0.1%
SM constraints say :
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First, we need data
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® Tevatron Peak instantaneous
luminosity :
® Above 300E30 cm3s
® Great news for Higgs
prospects

But challenge to collect
Higgs events



Z > ee at 300E30 cm2s!
7 interactions per crossing
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® Global tracking algorithm must find all
tracks at Level 1 trigger:

Course resolution for high speed

At high luminosity, high PT result from
segments of low PT tracks
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B8 We identify electrons and muons from Z = I*I°

‘Triggering on ZH =1"I'bb e

Z > ee at 300E30 cm2s!
7 interactions per crossing

CDF updated Level 1 track
trigger to 3-D
® Adds higher resolution
stereo segments

/
sl bt ateacks
fain T T3 "D\ found
}Aj : 2t e D? e
/A —c

® Global tracking algorithm must find all
tracks at Level 1 trigger:
® Course resolution for high speed

At high luminosity, high PT result from
segments of low PT tracks

Muon trigger alone would use entire CDF physics
bandwidth at 300 E 30 cm2s1 28}

700 - + High PT Muon Trigger before upgrade

600 +— *

500 M X

400

rateis 800 Hz s

()
O

300

L2 Trigger Rate [Hz]

200

Vel
100 -
- e

0 __MM *

100 120 140 160 180 200 220 240
Luminosity [E30]




B8 We identify electrons and muons from Z = I*I°
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Z > ee at 300E30 cm2s!
7 interactions per crossing

CDF updated Level 1 track
trigger to 3-D
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® We identify electrons and muons from Z = I*I
® Global tracking algorithm must find all
tracks at Level 1 trigger:
® Course resolution for high speed
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Searches for ZH

ZH — libb

The “Bad”

ZH — lIbb

® Challenges
® Smallest Higgs signal

® Impact considered minimal by
2000 Tevatron Higgs report

® Advantages
® Only fully constrained channel
® Both Z and Hresonances
® Fake lepton backgrounds small

® Can we make this channel
competitive ?
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Searches for ZH

ZH — libb

The “Bad” ) The “Ugly”

ZH = llbb ZH = vwbb
® Challenges ® Challenges
® Smallest Higgs signal ® Troublesome backgrounds
® Impact considered minimal by ® Mismeasured jets & leptons
2000 Tevatron Higgs report create missing energy
® Advantages ® Advantages
® Only fully constrained channel ® 3Xsignal than ZH = llbb
® Both Z and H resonances ® Added signal from WH = Ivbb
® Fake lepton backgrounds small when lepton is missed
® Can we make this channel ® Can we separate large signal from

competitive ? difficult backgrounds ?



Let’'s do a counting experiment to find ZH —llbb

Signal BKG uncertainty in
Selection mu = 115 GeV Background units of expected SM
(Events) (Events) cross-section
in 1fb1 (1o stat. only)
Produced in CDF 5 100,000,000,000,000 2,000,000*SM
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| .2

q °
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Let’s do a counting experiment to find ZH->llbb

Decay lifetime

= 7

Displaced tracks

Lxy b //Q’Secondary vertex

Jet

- Primary vertta\ , // "B-tag" -
b e, A Identify 2nd
vertex
Signal BKG uncertainty in
d Background units of expected SM
SEIECtIOH (-Eventi) (EventS) Cross-section
in11fb (1o stat. only)
Produced in CDF 5 100,000,000,000,000 2,000,000*SM
Select one lepton 3 100,000,000 3,000*SM
Select Z boson 1.5 150,000 300*SM
Select 2 jets 1 3,000 50*SM
Require b-tag(s) 0.7 100 15*SM

® Backgrounds are 75% Z+jets after these cuts



Distinguishing Z+jets from ZH

® Best sensitivity to H—>bb should be with Mpp

® Easier to find Higgs if dijet mass resolution is
narrower
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Less background
under signal
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Distinguishing Z+jets from ZH ¢

® Best sensitivity to H—>bb should be with Mpp

® Easier to find Higgs if dijet mass resolution is
narrower

Less background Where’s Higgs ?
under narrower signal



Using MET to improve M;;

® In ZH = libb, there should be no missing
transverse energy (MET)
® Leptons measured well

® MET results from mismeasured jets
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Using MET to improve M;;

® In ZH = libb, there should be no missing
transverse energy
® Leptons measured well

® MET results from mismeasured jets

Jet 1

Lepton 1

MET likely from both

Lepton 2

o
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Resulting Mj; improvement ¢
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® We do a kinematic fit to assign MET to jets

® For events w/ two b-tags, dijet mass resolution
Improves from[1 8% to 11% ]
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Multivariate Higgs identification

# Dijet mass is good discriminant but not best

H

20 CDF Il Preliminary | Ld t=0973-102fb5"

o
g&%+f+ "

50 100 150 200 250
M, (GeV/c?)




Multivariate Higgs identification

# Dijet mass is good discriminant but not best
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Backgrounds are different
from signal in different ways
® We can train a Neural Network

Z+bb NN Output discriminant in 2 dimensions ZH NN Output

T

13
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Z+bb NN Output
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Data: Before b-tagging 5

Z+bb NN Output
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Z+bb NN Output
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Data: Before b-tagging

CDF Run lI PreliminaryJ Ldt=11b"- Pretag

Composed of
95% Z+jets

Data : 3000 events
useful for validating NN & background model
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One signal region : events with two b-tags

7

Expected :12.8 + 3.5
Data: 11 events
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One signal region : events with two b-tags
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Higgs candidate S:B=1:4 0

RUN 196170 EVENT 6577

e m— b-tag &
Jet237.1 Gev/ /
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Background in this bin

60% Z+bb

11% tt Higgs ~ 2 times tt

9% Z+cc

9% Z7Z

5% Z+qq (light) 16




ZH —>Vvvbb 3 times larger than ZH —I*I'bb T
Can we make similar improvements when Z =>Vvv ?

[ ZH-Ibb |

The “Bad”

g-l

® Fully reconstructed

® Triggered by high quality
lepton

® No real Missing Er
® Mostly Z backgrounds

[ ZH->wbb |,

The “Ugly” “5 -

Partially reconstructed

Triggered by low quality
missing energy

Real Missing Er
QCD is largest background

17



ZH —>Vvvbb 3 times larger than ZH —I*I'bb T
Can we make similar improvements when Z =>Vvv ?

[ ZH-Ibb |

The “Bad”

g-l

® Fully reconstructed

® Triggered by high quality
lepton

® No real Missing Er
® Mostly Z backgrounds

Special techniques:
Dijet + MET fitter
2D Neural Network

( ZH — vvbb )V

The “Ugly” ‘5\‘

Partially reconstructed

Triggered by low quality
missing energy

Real Missing Er
QCD is largest background

17



ZH —>Vvvbb 3 times larger than ZH —I*I'bb T
Can we make similar improvements when Z =>Vvv ?

[ ZH-1bb |

q

5 q o
The “Bad”

g-l

® Fully reconstructed

® Triggered by high quality
lepton

® No real Missing Er
® Mostly Z backgrounds
Special techniques:

Dijet + MET fitter
2D Neural Network

The “Ugly” 5\‘

Partially reconstructed

Triggered by low quality
missing energy

Real Missing Er
QCD is largest background

17



ZH —>Vvvbb 3 times larger than ZH —I*I'bb
Can we make similar improvements when Z =>Vvv ?

[ ZH-1bb |

The “Bad”

g-l

® Fully reconstructed

® Triggered by high quality
lepton

® No real Missing Er
® Mostly Z backgrounds

Special techniques:
Dijet + MET fitter
2D Neural Network

The “Ugly” B\‘

Partially reconstructed

Triggered by low quality
missing energy

Real Missing Er

QCD is largest background

What special techniques for this

one?
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Using tracking to reduce QCD

® MET typically measured in

calorimeter

# But majority of hadronic
energy carried by charge
particles

® Track momenta well

measured in drift chamber
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Using tracking to reduce QCD ¢

® MET typically measured in
calorimeter

# But majority of hadronic
energy carried by charge
particles

® Track mom_enta_ well
measured in drift chamber

Can calculate missing track
momenta, “trackMET"”
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Using tracking to reduce QCD ¢

® MET typically measured in

calorimeter

# But majority of hadronic
energy carried by charge
particles

® Track momenta well

measured in drift chamber

@ Can calculate missing track
momenta, “trackMET”

real neutrinos
@ Higgs events

jet is mismeasured in calorimeter
® QCD multi-jet events

trackMet is correlated to MET when

trackMet uncorrelated to MET when

=Track Fraction>
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Higgs events
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Track-based variables 1

® Advantages of trackMET

® Can extrapolate tracks to primary vertex
® Disentangle MET from additional interactions
® Independent of instantaneous luminosity (number of vertices)

® -~7 interactions per crossing at peak 300 E 30 cm™s?

@ Canremove effects of magnetic field
® Measure MET at vertex rather than at calorimeter

® Other variables provide additional signal discrimination:

® Sum Pt of tracks
® Maximum Pt of tracks
® We combine several track-based variables into a discriminant

Tracks pointing to primary Tracks pointing to all
vertex correlated to main vertices correlated to

physics process \ /% calorimeter MET

E— >\ // —
Beam //] / Beam

19



| TMVA response for classifier: TMIpANN |

&g T T T T

ZH — vvbb discriminants |-~

% Signal to background (QCD)
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ZH = vvbb discriminants

® Signal to background (QCD)

| TMVA response for classifier: TMIpANN |
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® We combine calorimeter-based variables and track-based
variables into a single discriminant
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ZH = vvbb discriminants
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® We combine calorimeter-based variables and track-based
variables into a single discriminant

Loose Double Tag Events (Signal Region)
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# No signal found, so we set limits

® Formpu=115GeV, 1.7 b

@ Observed limitis 8.0 * SM Higgs cross-section
® Expected limitis 8.3 * SM Higgs cross-section
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ZH — vbb candidates in Data

® Most Higgs-like event ® QCD-like event
2 M;=113 GeV ® M;j= 156 GeV
® Track MET points toward MET ® Track MET points toward jet
® indicates real neutrinos ® indicates mismeasured jet
® High NN Output (0.89) ® Low NN Output (0.003)
__Run 200536, Event 4538872 S Run 168568, Event 35002 | = —

ET J1 = 59.5 GeV

ET J1s

\ .Ge]:
.Ge

ﬁ Eﬁev ( w
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Combining multiple channels :

95% CL Limit/SM

CDF II Preliminar

""" —Emmn ® CDF alone has 5 Higgs channels
I, divided into 10 separate search
bt channels to improved Sig vs. Bkg.

120 140 160 180 200
Higgs Mass (GeV/c?)
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Combining multiple channels :

CDF 1I Preliminary
T T T T T T T
E = WHivbb 1.9/fb
7)) ===+ Expected
~~ = ZHvvbb 1.7/fb
.i: ====x= Expected
E | ZHlIbb 1/fb ]
o 102 F Expected ]
] C Hrt 2/fb
B Expected
q HWWIlvv 2.4/fb
U Expected
) = CDF for 1-2.4/fb
& ==2a. Expected CDF = 10
wn 10F 3
=) bt
1 L | L | L | L | L |
120 140 160 180 200

Higgs Mass (GeV/c?)

® CDF and DO together have
about 20 such search
channels

® CDF alone has 5 Higgs channels

divided into 10 separate search
channels to improved Sig vs. Bkg.

Tevatron Run II Preliminary, L=1.0-2.4 fb"

95% CL Limit/SM
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Combining multiple channels :

= T T ® CDF alone has 5 Higgs channels
72! P . i =
= T divided into 10 separate search
£y e channels to improved Sig vs. Bkg.
o g
U Expected
S o o
wy 10F- E
AN ) Tevatron Run II Preliminary, L=1.0-2.4 fb"
[ s 107 —
[ 2
™20 140 160 180 200 £
Higgs Mass (GeV/c?) j
@,
S
Q)
@)\
® CDF and DO together have
about 20 such search 1L SST . e e
channels Bt vt it e LY R R
110 120 130 140 150 160 170 180 190 200
m,(GeV/c”)

® Indirect constraints expect my < 160 GeV/c? @ 95% CL
® We will soon be able to exclude my ~ 160 GeV/c?
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Why itis worth doing Higgs

® Analyses are getting

mH:l 15 GeV

better s 16

bt Welve had ideas % " J '* —— Summer 2005 Channels

® We still have ideas j |I ——  Summer 2006 Channels

® Data still coming Tijlz H —  arXiv:0712.2383 (2007)
_E_ \ ——  Winter 2008 Channels
510 [+

With Imnproverments

0 1 2 3 4 5 6 7
Integrated luminosity/Experiment (fb™)
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Why it is worth doing Higgs

® Analyses are getting
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Why itis worth doing Higgs

® Analyses are getting m,=115 GeV
better s 16
® We've had ideas % 14 T Summer 200 Chianet
® We still have ideas 3 TSmO Gk
® Data still coming 1 —— uXivA7122383 2007)
15_ —  Winter 2008 Channels
£ 10 |- With Improvements
Expected limit l g | Green would be expected
goes down limit if we gave up in 2005
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as \ a through now
Creativity 2
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Advertisement : Got an idea ? Maximize your impact by
having it here'!
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Conclusions

.= Two CDF searches for Higgs in ZH make good

® Z=>Ill+H=- bb: the “Bad”

© Reduced background by improving dijet mass resolution
= Used 2-D Neural Network to distinguish Higgs signal

® Most sensitive channel with 1 fb™!

® Z-vv+H=Dbb:the “Ugly”

= Reduced background by using track-based variables
© Used Neural Network to distinguish Higgs signal

® Most sensitive channel with 1.7 fb™!

. Tevatron Higgs program is still in the race

= Lessons from these searches can be applied to LHC

, N

Expect > 3 times more data
Improvements in analysis technique are ongoing
Tevatron duel for the Higgs getting more exciting
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©= Two CDF searches for Higgs in ZH make good

® Z=>Ill+H=- bb: the “Bad”
© Reduced background by improving dijet mass resolution
= Used 2-D Neural Network to distinguish Higgs signal
® Most sensitive channel with 1 fb™!

® Z-vv+H= bb:the “Ugly”

® Reduced background by using track-based variables
© Used Neural Network to distinguish Higgs signal

® Most sensitive channel with 1.7 fb1

.= Tevatron Higgs program is still in the race

= Lessons from these searches can be applied to LHC
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Expect > 3 times more data
Improvements in analysis technique are ongoing
Tevatron duel for the Higgs getting more exciting
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